Truss Element in FEM
1. Truss vs. Beam (1-D Elements)
Truss | Beam |
---|---|
Supports only axial loads | Supports axial and bending loads |
No bending moments | Bending moments present |
Discussed in Lecture 5 | Discussed in Lecture 6 |
2. General Procedure of FEM (Finite Element Method)
- Domain discretization: Divide the domain into small, simple elements.
- Field interpolation: Approximate field quantities (displacements, etc.) within each element using interpolation functions (polynomials).
- DOF (Degrees of Freedom): Nodes at element boundaries share DOFs to ensure continuity.
- Element equations: Derive algebraic equations for each element:
[ [K^E] {u^E} = {F^E} ] - Global assembly: Assemble the element equations into the global system.
3. Shape Function for Truss Elements
3-D Truss Elements
- Displacement field components:
[ u(x, y, z), v(x, y, z), w(x, y, z) ] - They are functions of nodal displacements at nodes (1) and (2):
[ (u_1, v_1, w_1), (u_2, v_2, w_2) ]
1-D Truss Element Displacement Field
- Linear interpolation:
[ u(x) = N_1(x) u_1 + N_2(x) u_2 ] - Shape functions:
[ N_1(x) = \frac{L - x}{L}, \quad N_2(x) = \frac{x}{L} ] - In matrix form:
[ u(x) = [N_1 \quad N_2] \begin{Bmatrix} u_1 \ u_2 \end{Bmatrix} ]
4. Strain in 1-D Truss Element
- Strain-displacement relationship:
[ \varepsilon_x = \frac{du}{dx} ] - Strain-displacement matrix ( [B] ):
[ \varepsilon = [B] \begin{Bmatrix} u_1 \ u_2 \end{Bmatrix} ]
where
[ [B] = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} ]
5. Stress in 1-D Truss Element
- Hooke’s Law:
[ \sigma_x = E \varepsilon_x ] - Stress in terms of nodal displacements:
[ \sigma_x = E [B] \begin{Bmatrix} u_1 \ u_2 \end{Bmatrix} ]
6. Stiffness Matrix for 1-D Truss Element
- Strain energy:
[ U = \frac{1}{2} \varepsilon^T E \varepsilon \cdot V ] - Stiffness matrix expression:
[ [k^E] = \int_V B^T E B \, dV ] - For 1-D truss (constant cross-section (A)):
[ [k^E] = \frac{AE}{L} \begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix} ]
7. Global Stiffness Matrix Assembly
Procedure
- Expand element matrices to match global DOFs.
- Assemble by summing contributions of overlapping nodes.
Example: Two Bar Elements
- Element 1 (Nodes 1-2):
[ \begin{bmatrix} a & b \ c & d \end{bmatrix} ] - Element 2 (Nodes 2-3):
[ \begin{bmatrix} e & f \ g & h \end{bmatrix} ] - Global assembly results in:
[ [K] = \begin{bmatrix} a & b & 0 \ c & d + e & f \ 0 & g & h \end{bmatrix} ]
8. FEA by Hand (1-D Truss Example)
Steps
- Obtain stiffness matrices for each element.
- Expand and assemble into the global stiffness matrix ([K]).
- Apply boundary conditions and known forces.
- Solve ([K]{u} = {F}) for nodal displacements ({u}).
- Compute strain and stress:
- Strain:
[ \varepsilon = [B] {u} ] - Stress:
[ \sigma = E \varepsilon ]
- Strain:
Example Results (Given Parameters)
- (L = 2 m), (E = 210 GPa), (A = 1 cm^2), (P = 1000 N)
Displacements
[ u_1 = 0, \quad u_2 = 9.52 \times 10^{-5} m, \quad u_3 = 2.86 \times 10^{-5} m ]
Strains
[ \varepsilon_1 = 4.76 \times 10^{-5}, \quad \varepsilon_2 = 9.52 \times 10^{-5} ]
Stresses
[ \sigma_1 = 1.00 \times 10^7 N/m^2, \quad \sigma_2 = 2.00 \times 10^7 N/m^2 ]
9. Summary
✅ Key Concepts
- Truss elements only support axial loads.
- Displacement field is linearly interpolated using shape functions.
- Strain and stress derive from displacement gradients.
- Stiffness matrix derived from energy methods and assembled globally.
- Manual FEA steps emphasize the importance of assembly and boundary conditions.