Beam Element in FEM
1. Review of Truss vs. Beam (1-D Elements)
Truss | Beam |
---|---|
Supports axial loads only | Supports axial and bending loads |
Lecture #05 | Lecture #06 |
2. General Formula (From Previous Lecture)
-
General Displacement Approximation:
[ { u(x, y, z) } = [N] { u_n } ] -
Strain-Displacement Relation:
[ \varepsilon = [B] { u_n } ]
where ( [B] = \partial N ). -
Stress:
[ \sigma = E \varepsilon = E [B] { u_n } ] -
Element Stiffness Matrix:
[ [k^e] = \int_V B^T E B \, dV ] -
Truss Example Stiffness Matrix (1-D):
[ [k] = \frac{AE}{L} \begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix} ]
3. Types of Beams (Boundary Cases)
- Case 1: Simple supports (pinned).
- Case 2: Fixed support (clamped).
- Case 3: Cantilevered beams.
- Each nodal DOF includes translational and rotational components (v, θ).
4. Beam Deflection and Slope
-
Deflection:
[ v(x) ] -
Slope (Angle of rotation):
[ \theta(x) = \frac{dv}{dx} ] -
Curvature:
[ \kappa(x) = \frac{d^2 v}{dx^2} ] -
Curvature Change Rate:
[ \frac{d^3 v}{dx^3} ]
5. Bending Moment, Shear Force, and Stress-Strain Relation
-
Moment-Curvature Relation:
[ M(x) = -EI \frac{d^2 v}{dx^2} ] -
Shear Force Relation:
[ V(x) = -EI \frac{d^3 v}{dx^3} ] -
Axial Strain at ( y ) from neutral axis:
[ \varepsilon_x = -y \frac{d^2 v}{dx^2} ] -
Axial Stress:
[ \sigma_x = -E y \frac{d^2 v}{dx^2} ]
6. Degrees of Freedom (DOF) for Simple Beam
For nodes ( 1 ) and ( 2 ):
[
{ n } = \begin{Bmatrix} v_1 \ \theta_1 \ v_2 \ \theta_2 \end{Bmatrix}
]
7. Shape Functions for Beam Elements
-
Interpolated displacement field:
[ v(x) = N_1(x) v_1 + N_2(x) \theta_1 + N_3(x) v_2 + N_4(x) \theta_2 ] -
Interpolated slope field:
[ \theta(x) = \frac{dv}{dx} = \text{function of } { v_1, \theta_1, v_2, \theta_2 } ] -
Shape function ( N_i(x) ):
Typically cubic polynomials for beams to represent constant shear and moment variations.
8. Example of Shape Functions
- ( N_1(x) = 1 - 3(x/L)^2 + 2(x/L)^3 )
- ( N_2(x) = x(1 - x/L)^2 )
- ( N_3(x) = 3(x/L)^2 - 2(x/L)^3 )
- ( N_4(x) = x(x/L)^2 - x^2/L )
9. Strain-Displacement Matrix [B]
-
For beam bending strain (axial):
[ \varepsilon_x = -y \frac{d^2 v}{dx^2} ] -
[B] matrix involves second derivatives of ( N_i(x) ):
[ [B] = y \cdot \begin{bmatrix} \frac{d^2 N_1}{dx^2} & \frac{d^2 N_2}{dx^2} & \frac{d^2 N_3}{dx^2} & \frac{d^2 N_4}{dx^2} \end{bmatrix} ]
10. Element Stiffness Matrix for Beam
-
General formula:
[ [k^e] = \int_0^L B^T E B \, dV = \int_0^L \frac{d^2 N}{dx^2} EI \frac{d^2 N}{dx^2} dx ] -
Simplified matrix for uniform properties:
[ [k^e] = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L
6L & 4L^2 & -6L & 2L^2
-12 & -6L & 12 & -6L
6L & 2L^2 & -6L & 4L^2 \end{bmatrix} ]
11. Bending Moment, Strain, and Stress
-
Bending Moment:
[ M = EI \frac{d^2 v}{dx^2} = EI [B] { u } ] -
Strain:
[ \varepsilon = -y \frac{d^2 v}{dx^2} = -y [B] { u } ] -
Stress:
[ \sigma = E \varepsilon = -E y [B] { u } ]
12. Summary (Beam Element Formulation)
-
Displacement:
[ v(x) = [N] { u } ] -
Strain:
[ \varepsilon = [B] { u } ] -
Stress:
[ \sigma = E [B] { u } ] -
Stiffness Matrix:
[ [k^e] = \int_V B^T E B \, dV ] -
For beam elements:
[ [k^e] = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L
6L & 4L^2 & -6L & 2L^2
-12 & -6L & 12 & -6L
6L & 2L^2 & -6L & 4L^2 \end{bmatrix} ]