Review of Solid Mechanics II
1. Linear Algebra Review
(1) Systems of Linear Equations
A linear equation in general form:
[ a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b ]
For a system of linear equations:
[ A X = B ]
where:
- ( A ) is the coefficient matrix,
- ( X ) is the vector of unknowns,
- ( B ) is the vector of constants.
(2) Matrices and Operations
- Matrix Addition & Subtraction: ( A \pm B = [a_{ij} \pm b_{ij}] )
- Scalar Multiplication: ( k A = [k a_{ij}] )
- Matrix Multiplication: ( (AB){ij} = \sum{k=1}^{p} a_{ik} b_{kj} )
(3) Properties of Matrices
- Associative Law: ( A(BC) = (AB)C )
- Distributive Law: ( A(B+C) = AB + AC )
- Transpose Properties:
- ( (A^T)^T = A )
- ( (A+B)^T = A^T + B^T )
- ( (AB)^T = B^T A^T )
(4) Determinants and Inverses
- Determinant:
[ \det(A) = \sum_{i=1}^{n} a_{i1} C_{i1} ]
where ( C_{ij} ) is the cofactor:
[ C_{ij} = (-1)^{i+j} M_{ij} ]
-
Inverse of a Matrix: If ( A ) is invertible:
[ A^{-1} = \frac{\text{adj}(A)}{\det(A)} ]
where adj(A) is the adjugate matrix.
(5) Eigenvalues and Eigenvectors
For a square matrix ( A ), an eigenvalue equation is:
[ A K = \lambda K ]
Rearranging:
[ (A - \lambda I) K = 0 ]
For nontrivial solutions:
[ \det(A - \lambda I) = 0 ]
which gives the eigenvalues ( \lambda ), and solving for ( K ) gives the eigenvectors.
2. Basics of Stress and Strain
(1) Definition of Stress
Stress at a point is defined as:
[ \sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} ]
(2) Stress Components
For an infinitesimal volume:
[
\mathbf{\sigma} =
\begin{bmatrix}
\sigma_{xx} & \sigma_{xy} & \sigma_{xz}
\sigma_{yx} & \sigma_{yy} & \sigma_{yz}
\sigma_{zx} & \sigma_{zy} & \sigma_{zz}
\end{bmatrix}
]
where:
- ( \sigma_{xx}, \sigma_{yy}, \sigma_{zz} ) are normal stresses.
- ( \sigma_{xy}, \sigma_{xz}, \sigma_{yz} ) are shear stresses.
From moment equilibrium:
[ \sigma_{xy} = \sigma_{yx}, \quad \sigma_{xz} = \sigma_{zx}, \quad \sigma_{yz} = \sigma_{zy} ]
(3) Stress Transformation
For a rotated coordinate system:
[ \sigma_P = \sigma N ]
where ( N ) is the unit normal vector.
3. Principal Stresses and Invariants
(1) Principal Stresses
Principal stresses occur on planes with no shear stress.
Solving:
[ \det(\sigma - \lambda I) = 0 ]
yields principal stresses ( \sigma_1, \sigma_2, \sigma_3 ).
(2) Stress Invariants
Stress tensor properties do not change with coordinate system rotations:
[ I_1 = \sigma_{xx} + \sigma_{yy} + \sigma_{zz} ]
[ I_2 = \sigma_{xx} \sigma_{yy} + \sigma_{yy} \sigma_{zz} + \sigma_{zz} \sigma_{xx} - \sigma_{xy}^2 - \sigma_{yz}^2 - \sigma_{zx}^2 ]
[ I_3 = \det(\sigma) ]
4. First Law of Thermodynamics in Solid Mechanics
(1) Energy Balance
[ \delta W + \delta H = \delta U + \delta K ]
where:
- ( W ) = work done by external forces.
- ( H ) = heat transfer.
- ( U ) = internal energy.
- ( K ) = kinetic energy.
For static equilibrium and adiabatic conditions:
[ \delta W = \delta U ]
(2) Work Done by Stresses
Using the divergence theorem:
[ \delta W = \int_V \sigma_{ij} \delta \varepsilon_{ij} \, dV ]
Internal energy per unit volume:
[ \delta U_0 = \frac{1}{2} (\sigma_{xx} \delta \varepsilon_{xx} + \sigma_{yy} \delta \varepsilon_{yy} + \sigma_{zz} \delta \varepsilon_{zz} + 2\sigma_{xy} \delta \varepsilon_{xy} + 2\sigma_{yz} \delta \varepsilon_{yz} + 2\sigma_{zx} \delta \varepsilon_{zx}) ]
5. Hooke’s Law for Isotropic Elasticity
For an isotropic material (same properties in all directions), Hooke’s law is:
[ \varepsilon_{xx} = \frac{1}{E} (\sigma_{xx} - \nu (\sigma_{yy} + \sigma_{zz})) ]
[ \varepsilon_{yy} = \frac{1}{E} (\sigma_{yy} - \nu (\sigma_{xx} + \sigma_{zz})) ]
[ \varepsilon_{zz} = \frac{1}{E} (\sigma_{zz} - \nu (\sigma_{xx} + \sigma_{yy})) ]
where:
- ( E ) = Young’s modulus.
- ( \nu ) = Poisson’s ratio.
For shear stress:
[ \gamma_{xy} = \frac{\tau_{xy}}{G}, \quad \gamma_{xz} = \frac{\tau_{xz}}{G}, \quad \gamma_{yz} = \frac{\tau_{yz}}{G} ]
where ( G ) is the shear modulus:
[ G = \frac{E}{2(1+\nu)} ]
6. Von Mises Stress
To determine failure under multiaxial loading, we use the von Mises stress:
[ \sigma_e = \sqrt{\frac{1}{2} \left( (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right)} ]
For stress components:
[ \sigma_e = \sqrt{\frac{1}{2} \left( (\sigma_{xx} - \sigma_{yy})^2 + (\sigma_{yy} - \sigma_{zz})^2 + (\sigma_{zz} - \sigma_{xx})^2 + 6(\sigma_{xy}^2 + \sigma_{yz}^2 + \sigma_{zx}^2) \right)} ]
7. Summary
✅ Key Topics
- Linear Algebra Review: Matrices, determinants, eigenvalues.
- Stress and Strain Basics: Stress tensors, transformation.
- Principal Stresses and Invariants: Coordinate-independent properties.
- First Law of Thermodynamics: Work-energy relation in solids.
- Hooke’s Law for Isotropic Materials: Linear elasticity.
- Von Mises Stress: Failure criterion for materials.